988. Triazanaphthalenes. Part II. ${ }^{1}$ Covalent Hydration in 1,4,6-Triazanaphthalenes.

By Adrien Albert and G. B. Barlin.

Syntheses of new 1,4,6-triazanaphthalenes are described. The substance previously considered (by others) to be 2 -hydroxy-3-methyl-1,4,6-triazanaphthalene is shown to be the 3-hydroxy-2-methyl derivative, and vice versa.

Ionization constants and ultraviolet spectra are presented for the various ionic species. The cation of 3 -hydroxy-1,4,6-triazanaphthalene, like that of the parent compound, binds water strongly at the 1,2 -bond. These water adducts are stabilized by a 4 -aminopyridinium type of resonance.

Two hypotheses seem to cover all known examples of covalent hydration, e.g., (I) \rightleftharpoons (II), across a $\mathrm{C}=\mathrm{N}$ bond of heteroaromatic substances: (A) Hydration is apt to occur at a double bond if sufficient electron-attracting centres are present so that this double bond no longer participates greatly in aromatic conjugation. (B) Formation of the water adduct is greatly favoured if this species is stabilized by resonance. ${ }^{2}$ In most cases the electronattracting centres referred to in (A) have usually been doubly bound ring-nitrogen atoms, and the stabilizing resonances in (B) have usually been of the type $\mathrm{HN}-\mathrm{CR}=\stackrel{+}{\mathrm{N}} \mathrm{H} \longleftrightarrow$
$\mathrm{H} \stackrel{+}{\mathrm{N}}=\mathrm{CR}-\mathrm{NH}$, e.g., amidinium-, guanidinium-, and urea-type resonances in quinazoline cations, ${ }^{3}$ the 2 -aminopteridine cation, ${ }^{4}$ and 2 -hydroxypteridine, ${ }^{5}$ respectively. The 1,3,x-triazanaphthalene cations, discussed in Part I, ${ }^{\mathbf{1}}$ also show amidinium-type stabilization of hydration.

On the other hand, 4 -aminopyridinium-type stabilization (III) has been postulated ${ }^{6}$ for the cation of 6 -hydroxypteridine (IV). So we examined the cations of some $1,4,6$ triazanaphthalenes for covalent hydration in the hope of finding undoubted examples of this type of resonance stabilization, because (in contrast to the pteridines) no amidinium

[^0]resonance is possible in the non-pyrazine ring. These triazanaphthalenes differ from pteridines only by lacking $\mathrm{N}-1$, and the structural formulæ, e.g., (I), are drawn to bring out this relation.

Preparations.-The preparation, from 4-hydroxypyridine, of the two intermediates most often required, namely, 4 -chloro-3-nitro- and 3,4-diamino-pyridine, is described in the Experimental section because published methods 7,8 omit some essential details. 1,4,6-Triazanaphthalene was made as before ${ }^{9}$ from 3,4 -diaminopyridine and glyoxal.

3 -Hydroxy-1,4,6-triazanaphthalene (6 -hydroxy-1-deazapteridine) was first prepared by an unequivocal route: 4-chloro-3-nitropyridine was condensed with ethyl aminoacetate; to give ethyl 3-nitro-4-pyridylaminoacetate ($V ; R=H, R^{\prime}=E t$), which was hydrogenated to 1,2 -dihydro-3-hydroxy-1,4,6-triazanaphthalene. Iodine oxidized this, in poor yield, to 3 -hydroxy-1,4,6-triazanaphthalene, which was more conveniently prepared by the action of ethyl glyoxylate hemiacetal on 3,4 -diaminopyridine under acidic conditions. The two specimens had identical R_{F} values and ultraviolet and infrared spectra; moreover, the one made from ethyl glyoxylate was reduced by potassium borohydride, in good yield, to the above 1,2 -dihydro-derivative.

In the pteridine series, ethyl glyoxylate hemiacetal with 4,5-diaminopyrimidine gives 6 -hydroxypteridine under acid conditions, ${ }^{10}$ and a mixture of 6 - and 7 -hydroxypteridine under neutral conditions. ${ }^{11}$ Here too, acidic conditions gave only the 3-hydroxy- and neutral conditions a mixture of 2 - and 3 -hydroxy-1,4,6-triazanaphthalene. The less basic 2 -isomer was separated by a pH -adjustment suggested by the relevant ionization constants.

The 2 (but not the 3)-isomer, when spotted on paper, gives a photo-reaction also shown by 7 (but not by 6)-hydroxypteridine. The dark (absorption) spot seen in light of $254 \mathrm{~m} \mu$ changes, after irradiation for a minute at that wavelength, to a violet fluorescence (suitably detected in light of $365 \mathrm{~m} \mu$). This type of change is known to be a photoreduction in the pteridine series ${ }^{12}$ and can be correlated well with structure.

Oxidation, more vigorous than that mentioned above, of 1,2-dihydro-3-hydroxy-1,4,6triazanaphthalene with iodine or potassium ferricyanide, and of 3 -hydroxy-1,4,6-triazanaphthalene with the latter, gave 2,3 -dihydroxy-1,4,6-triazanaphthalene. This substance was more conveniently made by ring-closure of 4 -amino- 3 -carboxyformamidopyridine (from 3,4-diaminopyridine and dimethyl oxalate). The identity of the products was shown by R_{F} values and infrared spectra.

Attempts to prepare 3 -chloro- and 3 -mercapto-1,4,6-triazanaphthalene failed, e.g., by refluxing with phosphorus halides, or with phosphorus pentasulphide in boiling benzene, xylene, or pyridine (a solvent series of increasing efficacy ${ }^{13}$).

When it was found that 1,4,6-triazanaphthalene and its 3-hydroxy-derivative had strongly hydrated cations (see below), it was decided to prepare the 2 -methyl derivatives
${ }^{7}$ Crowe, J., 1925, 2028.
${ }^{8}$ Bishop, Cavell, and Chapman, J., 1952, 437.
${ }^{9}$ Albert and Pedersen, $J ., 1956,4683$.
10 Albert, $J ., 1955,2690$.
${ }_{11}$ Albert, Brown, and Cheeseman, J., 1952, 1620.
12 Albert, Nature, 1956, 178, 1672 .
${ }^{13}$ Albert and Barlin, J., 1959, 2384; 1962, 3129.
to see if hydration was lessened in analogy with the insertion of a 7-methyl-group into 6 -hydroxypteridine (IV). ${ }^{6}$

Only one methyl-1,4,6-triazanaphthalene was obtained on reaction between pyruvaldehyde and 3,4-diaminopyridine (at various pH values and in various solvents as in ref. 14). This substance is considered to be the 3 -methyl isomer from evidence of hydration (see below). Attempts to confirm this structure by oxidation to a known hydroxymethyltriazanaphthalene with potassium permanganate or hydrogen peroxide failed because of extensive decomposition. We have been unable to prepare the 2 -methyl derivative.

Next we attempted the simultaneous preparation of 2 -hydroxy-3-methyl- and 3-hydroxy-2-methyl-1,4,6-triazanaphthalene from ethyl pyruvate and 3,4-diaminopyridine, by a recently published method. ${ }^{15}$ It soon occurred to us that these authors had accidentally transposed the melting points of these isomers. Thus the isomer of m. p. 265° gave the characteristic photo-decomposition described above for 2 -hydroxy-1,4,6-triazanaphthalene, and hence we considered it likely to be the 2 -hydroxy- 3 -methyl derivative, and not the 3 -hydroxy-2-methyl derivative as stated. ${ }^{15}$ If this assignment is correct, the other isomer ($\mathrm{m} . \mathrm{p} .280^{\circ}$), which is photo-stable, must be the 3 -hydroxy- 3 -methyl isomer.

These new assignments were confirmed by reducing the isomer of m. p. 280° to $1,2-$ dihydro-3-hydroxy-2-methyl-1,4,6-triazanaphthalene. The latter was unequivocally synthesized from 4 -chloro-3-nitropyridine by condensation with alanine methyl ester to methyl α-(3-nitro-4-pyridylamino)propionate ($\mathrm{V} ; \mathrm{R}=\mathrm{R}^{\prime}=\mathrm{Me}$), followed by catalytic reduction and ring closure.

Although it has been claimed ${ }^{15}$ that reaction of these two hydroxy-methyltriazanaphthalenes with diazomethane gave N-methyl derivatives, we found that no methylation took place with this reagent (or with methyl sulphate or iodide) under a great variety of conditions. Hence we repeated these authors more direct syntheses ${ }^{15}$ of these derivatives from ethyl pyruvate and 3 -amino-4-methylamino- and 4-amino-3-methylaminopyridine, ${ }^{8}$ respectively. The products gave good elemental analytical figures $\left(\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}\right)$ and their ultraviolet spectra closely resembled those of the corresponding - $\mathrm{NH}-$ analogues. Also the expected photo-reaction (see above) was elicited from the 2 -oxo(and not from the 3 -oxo)-derivative. Our melting points differed greatly from those published, ${ }^{15}$ viz., 1,2-dihydro-1,3-dimethyl-2-oxo-(141-142 ${ }^{\circ}$; lit., 276-277 ${ }^{\circ}$), and 3,4-dihydro-2,4-dimethyl-3-oxo-1,4,6-triazanaphthalene [114-115 ; lit., $228-230^{\circ}$ (decomp.)]. These lower figures (which Dr. J. W. Clark-Lewis tells us he has confirmed on specimens that he has recently made) are reasonable for a triazanaphthalene which has no bondable hydrogen atom (cf. 3,4-dihydro-4-methyl-3-oxo-1,4,5-triazanaphthalene ${ }^{16}$ which melts at 117°).

Synthesis'r of 7 -amino-1,4,6-triazanaphthalene (the 1-deaza-analogue of 2 -aminopteridine the cation of which is hydrated readily ${ }^{4}$) was attempted from ethyl 4,6-dihydroxy-pyridine-3-carboxylate. ${ }^{17}$ This ester was prepared from diethyl acetonedicarboxylate and converted (through ethyl 4,6-dichloropyridine-3-carboxylate) into 4,6-dichloropyridine-3carboxylic acid. This acid was investigated further as it is said ${ }^{17}$ to exist as a hydrate, m. p. 155°, and an " anhydrous" form, m. p. $152-153^{\circ}$, obtained from the former by the consecutive action of phosphorus halides and ammonia. The " anhydrous" form proved to be 4,6 -dichloropyridine-3-carboxamide, and the erroneous earlier assignment ${ }^{17}$ is partly explained by the omission of elemental analysis for nitrogen.

We converted this amide, by Hofmann degradation, into 5-amino-2,4-dichloropyridine. This failed to react with ammonia, even at 180°, but readily condensed with hydrazine hydrate to give 5 -amino-2-chloro-4-hydrazinopyridine. The latter, reduced with zinc and

[^1]acid, gave 2 -chloro-4,5-diaminopyridine, previously known only as a by-product in the consecutive amination, nitration, and reduction of 2,4 -dichloropyridine. ${ }^{18}$

Condensation of this diamine with glyoxal gave 7 -chloro-1,4,6-triazanaphthalene which was quite different from the substance given this name by early workers; ${ }^{19}$ the latter is now known to be the 5 -chloro-isomer. ${ }^{15}$ Our chloro-compound gave the required 7 -amino-1,4,6-triazanaphthalene with ammonia (incidentally, it could not be converted into the 7-hydroxy-analogue by boiling aqueous acid, alkali, or sodium acetate, or into the 7 -methoxy-analogue with sodium methoxide).

Measurements of the ionization constants and ultraviolet spectra of these triazanaphthalenes are reported in the Table.

Covalent Hydration.-It was found in 1956 that the cation of $1,4,6$-triazanaphthalene slowly changes into that of a stronger base during titration with acid, and that alkali regenerates the original substance. ${ }^{9}$ Three $\mathrm{p} K_{\mathrm{a}}$ values, $3 \cdot 05,4 \cdot 60$, and 8.50 , were found, and ring-opening was suspected. Later work, ${ }^{20}$ in which rapid reaction techniques ${ }^{21,22}$ were used, showed that the lowest $\mathrm{p} K_{\mathrm{a}}$ was that of the starting material, 8.50 was that of the (solitary) product, and 4.60 was that of the equilibrium mixture of initial and final substances. The evidence was compatible equally with ring-opening or hydration of a double bond in the cation. ${ }^{20}$ That ring-opening does not occur was shown ${ }^{4}$ by a negative result in the sensitive p-nitrophenylhydrazine test for aldehydes, at pH 2.

In the present work, 1,4,6-triazanaphthalene, when oxidized with cold potassium

Physical properties.								
Substance	Species	${ }^{4}{ }_{\mathrm{p} K_{\mathrm{a}}}^{\mathrm{I}}$	onization ($\mathrm{H}_{2} \mathrm{O} ; 20^{\circ}$)			b Spectroscopy in water ${ }^{j}$		pH
			Spread	Concn.				
			(土)	(M)	A.w. 1	$\lambda_{\text {max. }}(\mathrm{m} \mu)$	$\log \varepsilon$	
1,4,6-Tviazanaphthalene								
Unsubst.	$\bigcirc \mathrm{A}^{\text {c }}$	-	-	-	-	230, 306, 314	$4 \cdot 38,3 \cdot 58,3 \cdot 57$	$9 \cdot 6$
	$\bigcirc \mathrm{H}$	-	-	$\overline{-3}$	$\overline{3}$	217, 254, 296	$4 \cdot 38,3.65,3 \cdot 70$	$9 \cdot 6$
	+ A	$2 \cdot 62$	$0 \cdot 02$	10^{-3}	328	228. 301, 312	$4 \cdot 33,3 \cdot 64,3.59$	1.6
	$+\mathrm{Eq}{ }^{\text {d }}$		$\} e$	-	-	$\left\{\begin{array}{c}211,232,264, \\ 305\end{array}\right.$	$\begin{gathered} 4 \cdot 15,4 \cdot 37,3 \cdot 34 \\ 3 \cdot 89 \end{gathered}$	$1 \cdot 0$
	$+\mathrm{H}^{\text {c }}$	$8 \cdot 50$				- -	-80	-
3-Me	$\bigcirc \mathrm{A}^{c}$	-	-	-	-	232, 303, 309	$4 \cdot 40,3 \cdot 65,3 \cdot 65$	$7 \cdot 0$
	$\bigcirc \mathrm{H}$	- 7			$\bar{\square}$	299	$3 \cdot 69$	11.2
	+ A	$2 \cdot 87$	$0 \cdot 04$	10^{-4}	315	$\underset{307^{\prime}}{229,271,298,}$	$\begin{gathered} 4 \cdot 42,3 \cdot 64,3 \cdot 67 \\ 3 \cdot 62 \end{gathered}$	1.7
	$+\mathrm{Eq}$	3.83	0.02	0.004		230, 300, 307	$4 \cdot 37,3 \cdot 77,3.77$	$1 \cdot 0$
	$+\mathrm{H}^{c}$	-9.2	-	0.004				
2,3-Me ${ }_{2}$	$\bigcirc \mathrm{A}^{\text {c }}$	-	-	-	-	233, 305, 312	$4 \cdot 41,3 \cdot 67,3.69$	$7 \cdot 0$
	$+\mathrm{A}^{c}$	3•33	$0 \cdot 03$	10^{-4}	320	$\begin{aligned} & 230,268,301, \\ & 311 \end{aligned}$	$\begin{gathered} 4 \cdot 41,3 \cdot 66,3 \cdot 69 \\ 3 \cdot 64 \end{gathered}$	$1 \cdot 0$
$2 \cdot \mathrm{OH}$	$\bigcirc \mathrm{A}$	--	-	-	--	232, 309	4.37, 3.79	5.8
	+ A	$3 \cdot 80$	$0 \cdot 03$	10^{-4}	271	$\begin{array}{r} 214,235,261 \\ +270,297 \end{array}$	$\begin{array}{r} 4 \cdot 09,4 \cdot 45,3 \cdot 74 \\ +3 \cdot 74,3 \cdot 77 \end{array}$	$1 \cdot 0$
	$-\mathrm{A}$	7.86	0.05	10^{-4}	350	241, 328	$4 \cdot 52,3 \cdot 81$	12.0
3-OH	$\bigcirc \mathrm{A}^{c}$	-	-	-	-	224, 248, 344	$4 \cdot 32,4 \cdot 15,3 \cdot 43$	$5 \cdot 6$
	$\bigcirc \mathrm{H}$	-	-	--	-	$<225,265,280$	$>4 \cdot 43,3.78,3.77$	$9 \cdot 0$
	+ A	(4)	0	-	-	-	-	
	$+\mathrm{Eq}$	$6 \cdot 79$	0.02	0.001	-	-		
	$+\mathrm{H}^{c}$	7.21	0.05	0.001	-	214, 232, 288	$4 \cdot 38,4 \cdot 42,4 \cdot 04$	$2 \cdot 0$
	$-\mathrm{A}^{\text {c }}$	7.32	$0 \cdot 02$	0.001	-	235, 250, 357	4.33, 4•18, 3.71	$12 \cdot 0$
	$-\mathrm{Eq}$	$7 \cdot 48$	0.02	0.001	-	-	-	-
	$-\mathrm{H}$	$(10.8)^{9}$	-	10^{-4}	300	-	-	-

[^2]Table (Continued.)

Ionization ($\mathrm{H}_{2} \mathrm{O}$; 20 ${ }^{\circ}$)									
Substance	Species ${ }^{*}$	Spread Concn.$\mathrm{p} K_{\mathrm{a}} \quad(\pm) \quad(\mathrm{M})$			A.w. $1^{\text {b }}$	Spectroscopy in water ${ }^{j}$		pH	
					$\lambda_{\text {max. }}(\mathrm{m} \mu)$	$\log \varepsilon$			
1,2-H2-3-OH	\bigcirc	-	-	-		-	226, 287	4.45, 3.73	$10 \cdot 0$
	+	7.96	$0 \cdot 04$	10^{-4}	309	213, 233, 290	$4 \cdot 40,4 \cdot 36,3.96$	$1 \cdot 0$	
		$12 \cdot 15$	0.05	10^{-4}	309	233, 299	$4.55,3.88$	$14 \cdot 2$	
$3-\mathrm{OH}-2-\mathrm{Me}$	O Eq^{h}	-	-	-	-	$\begin{gathered} 223,228,250 \\ 272,335 \end{gathered}$	$\begin{gathered} 4 \cdot 28,4 \cdot 24,4 \cdot 13 \\ 3 \cdot 68,3 \cdot 64 \end{gathered}$	6.5	
	$\bigcirc \mathrm{H}$	-	-	-	-	275-279	$3 \cdot 79$	$9 \cdot 85$	
	$+\mathrm{Eq}$	$4 \cdot 61$	$0 \cdot 03$	10^{-4}	254	213, 232, 289	$4 \cdot 39,4 \cdot 40,4 \cdot 03$	$2 \cdot 0$	
	$+\mathrm{H}^{\text {c }}$	$7 \cdot 17$	0.03	10^{-4}	299	213, ${ }^{\text {, }}$	4.30, 40, 4		
	- A	$8 \cdot 29$	0.04	10^{-4}	237	235, 267, 348	$4 \cdot 35,3.90,3.79$	$12 \cdot 0$	
1,2- $\mathrm{H}_{2}-3-\mathrm{OH}-2-\mathrm{Me}$	\bigcirc	$\overline{7} 8$	-	-	-	226, 286	4.46, $3 \cdot 74$	$10 \cdot 0$	
	$+$	$7 \cdot 89$	$0 \cdot 05$	10^{-4}	310	213, $235+$	$4 \cdot 12,4 \cdot 35+$	$5 \cdot 0$	
		12.24	0.05	10^{-4}	310	243, 297	4.27, $3 \cdot 99$		
	-					233, 29	4.53, 3.90	$14 \cdot 2$	
$\begin{aligned} & 3,4-\mathrm{H}_{2}-2,4-\mathrm{Me}_{2}-3- \\ & \text { oxo } \end{aligned}$	$\bigcirc \mathrm{A}^{c}$	-	-	-	-	$\begin{gathered} 225,229,248 \\ 270,337 \end{gathered}$	$\begin{gathered} 4 \cdot 29,4 \cdot 27,4 \cdot 08 \\ 3 \cdot 63,3 \cdot 64 \end{gathered}$	$7 \cdot 0$	
	$+\mathrm{Eq}$	$4 \cdot 38$	0.02	10^{-4}	290	219, 232, 290	$4 \cdot 38,4 \cdot 40,4 \cdot 01$	1.0	
$2-\mathrm{OH}-3-\mathrm{Me}$	\bigcirc	-	-	-	-	232, 247, 302	$4 \cdot 34,4 \cdot 03,3 \cdot 89$	6.3	
	+	$4 \cdot 15$	0.03	10^{-4}	240	$\begin{aligned} & 215,236,261, \\ & 291 \end{aligned}$	$\begin{gathered} 4 \cdot 30,4 \cdot 47,3 \cdot 75 \\ 3 \cdot 94 \end{gathered}$	$1 \cdot 0$	
	-	$8 \cdot 63$	0.05	10^{-4}	240	210, 240, 322	4.26, 4.47, 3.92	11.0	
$\xrightarrow{1,2-\mathrm{H}_{2}-1,3-\mathrm{Me}_{2}-2-}$	\bigcirc	-	-	-	-	235, 249, 305	$4 \cdot 40,4 \cdot 09,3 \cdot 86$	$7 \cdot 0$	
	+	$4 \cdot 00$	0.02	10^{-4}	330	$\begin{aligned} & 217,238,276 \\ & 292 \end{aligned}$	$\begin{gathered} 4 \cdot 28,4 \cdot 53,3 \cdot 84 \\ 3 \cdot 92 \end{gathered}$	$2 \cdot 0$	
2,3-(OH) ${ }_{2}$	\bigcirc	-	-	-	-	235, 251, 300	3.99, 4.00, $3 \cdot 99$	$6 \cdot 15$	
	$+$	$4 \cdot 10$	$0 \cdot 02$	10^{-4}	225	$\begin{aligned} & 219,246,254, \\ & 302 \end{aligned}$	$\begin{gathered} 4 \cdot 43,4 \cdot 14,4 \cdot 11 \\ 4 \cdot 06 \end{gathered}$	$1 \cdot 0$	
	-	$8 \cdot 19$	0.01	10^{-4}	330	$217,241,304,$ 316, 329	$4 \cdot 49,4 \cdot 08,4 \cdot 05$	$9 \cdot 9$	
	- -	11.50	0.05	10^{-4}	249	227, 247, 308, 319, 333	$4 \cdot 58,4 \cdot 24,4 \cdot 05$	$14 \cdot 2$	
$7-\mathrm{Cl}$	\bigcirc	-	-	-	-	235, 321	4.46, $3 \cdot 54$	$7 \cdot 0$	
	$+$	$1 \cdot 22$	$0 \cdot 03$	10^{-4}	300	241, 310	4.49, $3 \cdot 84$	$-1 \cdot 1$	
7-NH2	$\bigcirc \mathrm{A}^{c}$	-	-	-	-	244, 286, 395	$4 \cdot 47,3 \cdot 73,4 \cdot 46$	$7 \cdot 0$	
	$\bigcirc \mathrm{H}$	-	-	-	-	239, 300	4.38, $3 \cdot 64$	$9 \cdot 0$	
	$+\mathrm{H}$	$3 \cdot 18$	$0 \cdot 04$	10^{-5}	254	240, 266, 301,	$4 \cdot 49,3.92,3 \cdot 54$,	$1 \cdot 0$	
Pyridine									
4-NH2-3-	\pm	-	-	-	-	212, 265	$4 \cdot 22,4 \cdot 40$	$5 \cdot 0$	
$\mathrm{NH} \cdot \mathrm{CO} \cdot \mathrm{CO}_{2} \mathrm{H}$	+	$1 \cdot 37$	0.05	10^{-4}	240	212, 264	$4 \cdot 18,4 \cdot 16$	-1.1	
	-	$8 \cdot 04$	0.05	10^{-4}	266	238, 281	4.07, 3.35	10.5	

${ }^{a}$ ○ Neutral species, + cation, - anion, - - dianion, \pm zwitterion; A anhydrous (or substantially so), H hydrated, Eq equilibrium of anhydrous and hydrated species. ${ }^{\text {b }}$ Analytical wavelength ($\mathrm{m} \mu$) for spectroscopic determinations of $\mathrm{p} K_{\mathrm{a}}$; when there is no entry in this column, the determination was potentiometric. ${ }^{c}$ This is the more stable hydration form of this ionic species.
 neutral molecule. ' Obtained by continuous-flow spectrometry; the very small amount of hydrated anion present at equilibrium, and the rapidity of the hydration reaction at pH 12 (time for halfconversion is 1 sec.), make this figure only a lower limit. ${ }^{h}$ Almost anhydrous. ${ }^{i}$ Almost identical with line above. ${ }^{j}$ Shoulders and inflections in italics.
permanganate (a reagent successfully used to locate the position of hydration in hydroxypteridines ${ }^{23}$), gave 2 -hydroxy-1,4,6-triazanaphthalene. This result permits the following summary of equilibria and species. 1,4,6-Triazanaphthalene (neutral species) is stable and substantially anhydrous. ${ }^{20}$ The lowest $\mathrm{p} K_{\mathrm{a}}$ (now refined to $2 \cdot 62$) relates this species and the unstable anhydrous cation. Hydration occurs in the 1,2 -position, i.e., the only position where the addition of water to a $\mathrm{C}=\mathrm{N}$ bond could be stabilized by resonance [actually a resonance of the 4 -aminopyridinium type (III) which favours the cation]. The $\mathrm{p} K_{\mathrm{a}} 8.50$ relates the (stable) hydrated cation and the (unstable) hydrated neutral
${ }^{23}$ Brown and Mason, J., 1956, 3443.
species. [The spectrum of this neutral species (see Table) was obtained by the stoppedflow method: the extinction was found for a given wavelength instantly after basification of an acidic solution and this process was repeated.] The ratio (K_{1}) of hydrated to anhydrous cations, at equilibrium, is 95 calculated from the expression ${ }^{20} K_{1}=$ $\left(K_{\mathrm{a}}{ }^{\mathrm{A}}-K_{\mathrm{a}}{ }^{\mathrm{Eq}}\right) / K_{\mathrm{a}}{ }^{\mathrm{Eq}}$, where $\mathrm{p} K_{\mathrm{a}}{ }^{\mathrm{A}}$ is $2 \cdot 62$, and $\mathrm{p} K_{\mathrm{a}}{ }^{\mathrm{Eq}}$ is $4 \cdot 60$. The ratio of hydrated to anhydrous neutral species was calculated ${ }^{20}$ to be $0.0001: 1$.

The x-methyl-1,4,6-triazanaphthalene obtained from pyruvaldehyde and 3,4-diaminopyridine may be the 2 - or the 3 -methyl derivative. If the former (nucleophilic attack by a water molecule), this group should strongly inhibit hydration by a (largely) steric effect. Thus the ratios of hydrated to anhydrous species, at equilibrium, in quinazoline cation, ${ }^{3}$ and 2 -hydroxy-, ${ }^{20}$ and 6 -hydroxy-pteridine ${ }^{26}$ (neutral species) are decreased by a methyl group in the 4 -, 4 -, and 7 -position by factors of 400,53 , and 100 , respectively. But if the methyl group is in the 3 -position, where a $+M$ effect, as found in 7 -methylpteridine ${ }^{22}$ and 7 -methoxyquinazoline, ${ }^{24}$ cannot be exerted, a relatively smaller (inductive) effect can be expected. The expected hydration-depressing effect of a 2 -methyl group is clearly seen in the cation of 2,3 -dimethyl-1,4,6-triazanaphthalene ${ }^{25}$ in which no hydration would be detected. In the monomethyl derivative, the ratio of hydrated to anhydrous cation (calculated from the $\mathrm{p} K_{\mathrm{a}}$ values in the Table) at equilibrium is 9 . Hence it is concluded that the methyl group is in the 3 -position.

2 -Hydroxy-1,4,6-triazanaphthalene, like the structural analogue 7 -hydroxypteridine, gave no evidence of hydration.

3 -Hydroxy-1,4,6-triazanaphthalene was hydrated strongly as the cation. Thus, the spectrum of the cation was found strongly to resemble that of 1,2 -dihydro- 3 -hydroxy-1,4,6-triazanaphthalene, just as that of 6-hydroxypteridine cation (its structural analogue) strongly resembles that of 7,8-dihydro-6-hydroxypteridine. ${ }^{23}$ This indication that 3 -hydroxy-1,4,6-triazanaphthalene is hydrated in the 1,2 -position was confirmed by oxidation to 2,3 -dihydroxy- $1,4,6$-triazanaphthalene. As with the parent substance, hydration has occurred in the only position where the hydrate could be stabilized by resonance, and this again is of the 4 -aminopyridinium type (III). When a solution of the hydrated cation was made suddenly alkaline, the very large shift in the long-wavelength peak (from 288 to $357 \mathrm{~m} \mu$) gave evidence that the anion is anhydrous. Because the $\mathrm{p} K_{\mathrm{a}}$ of the (stable) hydrated cation is almost the same as that of the (stable) anhydrous cation ($7 \cdot 21$ and $7 \cdot 32$, respectively), it is not possible to obtain the spectrum of the equilibrium neutral molecule. However, by rapid adjustment to $\mathrm{pH} 9 \cdot 0$ of an acidic solution of the (hydrated) cation, the spectrum of the hydrated neutral species was obtained (see Table). Similarly, by rapid adjustment to $\mathrm{pH} 5 \cdot 6$ of an alkaline solution of the (anhydrous) anion, the spectrum of the anhydrous neutral molecule was found.

In 3-hydroxy-2-methyl-1,4,6-triazanaphthalene, the $\mathrm{p} K_{\mathrm{a}}$ values of the stable species lie further apart, and a purer spectrum of the anhydrous neutral species was obtained. The similarity of the spectrum of the cation, at equilibrium, to that of the cation of 1,2 -dihydro-3-hydroxy-2-methyl-1,4,6-triazanaphthalene indicates that the former is largely hydrated. However, the low $\mathrm{p} K_{\mathrm{a}}{ }^{\mathrm{Eq}}$ ($4 \cdot 61$, to be compared with 6.79 for 3 -hydroxy-1,4,6-triazanaphthalene) provides evidence of the blocking effect expected from a methyl group at the position of hydration (this is because, as the degree of hydration decreases, the $\mathrm{p} K_{\mathrm{a}}{ }^{\mathrm{Eq}}$ value moves towards that of the anhydrous species). The small change in $\lambda_{\text {max. }}$ in passing from the hydrated cation to the hydrated neutral species is as expected; so also is the large bathochromic change when this species is dehydrated, and the increase of $13 \mathrm{~m} \mu$ when the (anhydrous) anion is formed. N-Methylation (to 3,4-dihydro-2,4-dimethyl-3-oxo-1,4,6triazanaphthalene) alters the $\mathrm{p} K_{\mathrm{a}}{ }^{\mathrm{Eq}}$ and the spectrum of the cation very little (this compound gives no anion).

[^3]Further study of the hydration at 20° of 3 -methyl-1,4,6-triazanaphthalene cation (half-conversion time $=17 \mathrm{sec}$. at pH 17) and of the dehydration of the neutral molecule of 3-hydroxy-2-methyl-1,4,6-triazanaphthalene ($t_{0 \cdot 5}=11 \mathrm{sec}$. at pH 9.85) revealed strict first-order kinetics. The processes were catalysed by both H^{+}and OH^{-}; the minimum effect was observed at about pH 8.0 for the 3 -hydroxy-compound.

When an acid solution of 7 -amino-1,4,6-triazanaphthalene was neutralized, the $\log \varepsilon$ value of the long-wavelength band increased during 4 minutes ($t_{0.5}=150 \mathrm{sec}$. at $\mathrm{pH} 8 \cdot 2$) from 2.87 to 4.46 . First-order kinetics and catalysis by both H^{+}and OH^{-}were observed. These results are consistent with covalent hydration in the cation and the formation of a neutral species that is more stable when anhydrous. This behaviour is similar to that of 2 -aminopteridine ${ }^{\mathbf{4}}$ but has not yet been examined so closely.

Experimental

Microanalyses were by Dr. J. E. Fildes and her staff. Solids for analysis were dried at 110° unless otherwise stated. M. p.s were taken in soda-glass capillaries.

Yields refer to material which gave only one spot on paper chromatography (ascending) which was carried out on Whatman No. 1 paper with (a) 3% aqueous ammonium chloride, and (b) butan-1-ol- 5 N -acetic acid (7:3) as solvent.

Ionization constants were determined (several of them by Mr. H. Satrapa) by the methods developed in this Department. ${ }^{27}$ Ultraviolet spectra were measured first on a Shimadzu model RS 27 recording spectrophotometer and then the $\lambda_{\text {max. }}$ and ε values were checked on a Hilger "Uvispek " manual instrument (by Mr. D. Light and Mr. C. Arandjelovic). Infrared spectra were taken with a Perkin-Elmer 21 spectrophotometer, potassium bromide discs being used.

The rapid-reaction methods, which Dr. D. D. Perrin has developed, ${ }^{21,22}$ were kindly applied by him (assisted sometimes by Mr. Y. Inoue, sometimes by one of us) to all substances likely to give evidence of covalent hydration. These tests were (a) a three-minute self-recording potentiometric titration, ${ }^{21}$ and (b) the " stopped flow" technique (for faster reactions) in which the change in extinction coefficient with time (at a chosen set of wavelengths) is observed on solutions submitted to a sudden pH change and is then extrapolated to zero time. ${ }^{22}$

4-Hydroxy-3-nitropyridine.-4-Hydroxypyridine (18 g .) was added slowly, with stirring, to a cooled mixture of sulphuric acid (30 ml .; $d 1 \cdot 84$) and nitric acid (50 ml .; $d 1 \cdot 5$). The mixture was then heated under reflux on a steam-bath for 24 hr . (4 days gave no improvement) and poured on ice (about 500 g .). The mixture was slowly adjusted to pH 2.5 with aqueous sodium hydroxide and re-chilled. The product was filtered off and, recrystallized once from boiling water, gave 4-hydroxy-3-nitropyridine (61%), m. p. $275-277^{\circ}$ (lit., ${ }^{28} 280-281^{\circ}$). A further 1.55 g . were obtained by evaporating the filtrate to dryness, extracting the residue with boiling ethanol, and recrystallizing the dried extracted material from water. This nitration avoids the use of oleum. ${ }^{28,29}$ Quantities of reagents and yields were not given by earlier users of these conditions. ${ }^{7,8}$

4-Chloro-3-nitropyridine was prepared essentially as before ${ }^{29}$ but at a higher temperature (bath at $150^{\circ}, 2 \mathrm{hr}$.). The product, purified as before, ${ }^{8}$ and redistilled, had b. p. $76^{\circ} / 0.7 \mathrm{~mm}$. (lit., ${ }^{8} 68-70^{\circ} / 0.5 \mathrm{~mm}$.). It proved unstable on storage.

4-A mino-3-nitropyridine Hydrochloride.-(i) 4-Hydroxy-3-nitropyridine was prepared as described previously. ${ }^{30}$ 4-Amino-3-nitropyridine, prepared from this hydrochloride and aqueous ammonia, ${ }^{\mathbf{3 0}}$ had m. p. $200-202^{\circ}$ (lit., ${ }^{30} 204^{\circ}$).

3,4-Diaminopyridine.-4-Amino-3-nitropyridine (10 g .) and methanol (750 ml .) were hydrogenated over 5% palladium-charcoal (2.5 g .) at $20^{\circ} / 710 \mathrm{~mm}$. The catalyst was filtered off and the solvent evaporated. The product, crystallized once from water, gave 3,4-diaminopyridine (85%) m. p. 215° (lit. ${ }^{31} 218-219^{\circ}$).

Ethyl 3-Nitro-4-pyridylaminoacetate ($\mathrm{V} ; \mathrm{R}=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{Et}$).-To a stirred and cooled suspension of ethyl aminoacetate hydrochloride (12 g .), water (7 ml .), and benzene (27 ml .), was added 10 N -sodium hydroxide (11 ml .) during 3 min . The mixture was stirred for a further
${ }^{27}$ Albert and Serjeant, " Ionization Constants," Methuen, London, 1962.
${ }^{28}$ Koenigs and Fulde, Ber., 1927, 60, 2108.
${ }^{29}$ Kruger and Mann, $J ., 1955,2755$.
${ }^{30}$ Clark-Lewis and Singh, J., 1962, 2379.
${ }^{31}$ Weidenhagen, Train, Wegner, and Nordström, Ber., 1942, 75, 1936.

15 min ., potassium carbonate was added to form a paste, and the benzene was decanted. The paste was repeatedly shaken with benzene. The combined benzene extracts (70 ml .) were dried ($\mathrm{K}_{2} \mathrm{CO}_{3}$). 4-Chloro-3-nitropyridine ($3.5 \mathrm{~g} ., 0.023 \mathrm{~mole}$) was added to this solution, with cooling and stirring. The mixture was set aside at 20° overnight, then filtered from ethyl aminoacetate hydrochloride (m. p. 142°) and evaporated. The residue, crystallized from dilute alcohol, gave ethyl 3 -nitro-4-pyridylaminoacetate (85%), m. p. 81° (Found, for material dried at 20° : C, $48.1 ; \mathrm{H}, 5.05 ; \mathrm{N}, 18.4 . \mathrm{C}_{9} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires C, $48.0 ; \mathrm{H}, 4.9 ; \mathrm{N}, 18.7 \%$).

1,2-Dihydro-3-hydroxy-1,4,6-triazanaphthalene.-The preceding ester (2 g.) in ethanol $(160 \mathrm{ml}$.) was hydrogenated over Raney nickel at room temperature and pressure. The catalyst was filtered off and extracted with boiling water ($3 \times 50 \mathrm{ml}$.). The combined filtrates were evaporated to dryness under reduced pressure, to give 1,2-dihydro-3-hydroxy-1,4,6-triazanaphthalene (57%) which crystallized from boiling water (35 parts) as needles, m. p. $>250^{\circ}$ (decomp.) (Found: C, $\mathbf{5 6 . 2} \mathbf{~ H}, \mathbf{4 . 6} ; \mathrm{N}, \mathbf{2 8 . 2} . \quad \mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}$ requires $\mathrm{C}, 56.4 ; \mathrm{H}, \mathbf{4 . 7} ; \mathrm{N}, \mathbf{2 8 . 2 \%}$), $v_{\text {max. }} 2970$ (NH stretching) and $1675 \mathrm{~cm} .^{-1}$ ($\mathrm{C}=\mathrm{O}$ stretching).

To this substance (0.075 g .), dissolved in boiling water (3 ml .) and cooled to $55^{\circ}, 0.5 \mathrm{~N}$-iodine (1 ml .) was added. The dark suspension was rapidly heated, and 2 N -potassium hydroxide was added until the pH became $7 \cdot 2$. On refrigeration, the mixture deposited 3 -hydroxy- $1,4,6$ triazanaphthalene (0.02 g .), identical with that described below.

3-Hydroxy-1,4,6-triazanaphthalene.-3,4-Diaminopyridine (0.55 g., 0.005 mole), ethyl glyoxylate hemiacetal ${ }^{32}$ ($1 \mathrm{~g} ., 1 \cdot 3$ equiv.), and 2 N -sulphuric acid (9 ml .) were set aside at $\sim 25^{\circ}$ for a week. Sodium citrate (0.5 g .) was added, and the solution adjusted to pH 7.2 with 10 N -sodium hydroxide ($\sim 2 \mathrm{ml}$.) and chilled overnight. The crystals of 3 -hydroxy-1,4,6triazanaphthalene (78%) were recrystallized from 33 parts of water (Found, for material dried at $110^{\circ} 0.001 \mathrm{~mm} .: ~ \mathrm{C}, 55.9 ; \mathrm{H}, 3.8 ; \mathrm{N}, 27.6$. $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}, 0.25 \mathrm{H}_{2} \mathrm{O}$ requires $\mathrm{C}, 55.5 ; \mathrm{H}, 3.7$; $\mathrm{N}, \mathbf{2 7 . 7} \%$). At 280° it becomes deep orange without melting. Unlike 6 -hydroxypteridine, which is rapidly disproportionated in $0 \cdot 1 \mathrm{~N}$-sodium hydroxide at 20°, this substance was unchanged after a week.

2-Hydroxy-1,4,6-triazanaphthalene.-3,4-Diaminopyridine ($1 \cdot 1 \mathrm{~g}$.), water (10 ml .), and ethyl glyoxylate hemiacetal ($2 \cdot 2 \mathrm{ml}$.) were refluxed for 35 min . The initial pH was $7 \cdot 0$, the final pH 5.8 . The crystals of 2-hydroxy-1,4,6-triazanaphthalene (56%) which were deposited on chilling overnight were recrystallized from 90 parts of boiling water (carbon) (Found, for material dried at 20° : C, $57 \cdot 2 ; \mathrm{H}, \mathbf{3 \cdot 4} ; \mathrm{N}, 28 \cdot 2 . \quad \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}$ requires $\mathrm{C}, 57 \cdot 1 ; \mathrm{H}, \mathbf{3} \cdot \mathbf{4} ; \mathrm{N}, 28 \cdot 6 \%$), $\nu_{\text {max }} 2850$ (NH stretching), $1660 \mathrm{~cm} .^{-1}$ ($\mathrm{C}=\mathrm{O}$ stretching). It became orange at 240° without melting. The hydrochloride crystallized from N -hydrochloric acid.

The filtrate, adjusted to pH 7.2 with sodium phosphate and hydroxide, deposited the 3 -hydroxy-isomer as quartahydrate, in 35% yield (Found: C, $55.8 ; \mathrm{H}, 3.9$; N, 27.5%).

Paper chromatography (see above) gave $R_{\mathrm{F}} 0.70$ and 0.75 in ammonium chloride, and 0.65 and $0.35-0.55$ in butanol-acetic acid, for the 2 - and the 3 -hydroxy-isomer, respectively.

Reduction of 3 -Hydroxy-1,4,6-triazanaphthalene.-To this substance (0.45 g .) in 0.5 N potassium hydroxide (6.6 ml ., $1 \cdot 1$ equiv.) was added potassium borohydride (0.07 g .) at 20°. 'The next day the pH was adjusted from >13 to $9 \cdot 5$. 1,2-Dihydro-3-hydroxy-1,4,6-triazanaphthalene (75%) was recrystallized from water (Found, for material dried at 20° : C, 56.3 ; H, 4.9 ; N, 28.0%).

Oxidation of 1,2-Dihydro-3-hydroxy-1,4,6-triazanaphthalene.-To this substance ($0 \cdot 1 \mathrm{~g}$. , 0.0007 mole) in boiling water (4 ml .) was added iodine ($0.2 \mathrm{~g} ., 0.0008 \mathrm{~mole}$) dissolved in water (3 ml .) with potassium iodide. The mixture was heated on a steam-bath for 40 min ., then adjusted to pH 7 with sodium carbonate. The 2,3-dihydroxy-1,4,6-triazanaphthalene (0.045 g .) that separated was recrystallized from water, then having m. p. $>320^{\circ}$ (Found: C, $\mathbf{5 1} \cdot \mathbf{2 5}$; $\mathrm{H}, 3 \cdot 1 . \mathrm{C}_{7} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}_{2}$ requires $\mathrm{C}, 51 \cdot 5 ; \mathrm{H}, 3 \cdot 1 \%$), $v_{\text {max }} 3235$ and 2700 (NH stretching) and $1701 \mathrm{~cm} .^{-1}$ ($\mathrm{C}=\mathrm{O}$ stretching).

4-A mino-3-carboxyformamidopyridine.-3,4-Diaminopyridine (0.55 g .) in N -hydrochloric acid (4 ml .) was refluxed with dimethyl oxalate ($1.1 \mathrm{~g} ., 2$ equiv.) for 1 hr . The solution (pH $<2 \cdot 5$), adjusted to pH 5.0 and chilled, deposited 4-amino-3-carboxyformamidopyridine (90%), which recrystallized from 140 parts of boiling water (Found, for material dried at $110^{\circ} / 0.001 \mathrm{~mm}$. with $\mathrm{P}_{2} \mathrm{O}_{5}: \mathrm{C}, 46 \cdot 6 ; \mathrm{H}, 4 \cdot 0 ; \mathrm{N}, 23 \cdot 0 . \quad \mathrm{C}_{7} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}_{3}$ requires $\mathrm{C}, 46 \cdot 4 ; \mathrm{H}, 3.9 ; \mathrm{N}, 23 \cdot 2 \%$). This acid (0.055 g .), heated at 230° for 1.5 hr ., gave 2,3 -dihydroxy- $1,4,6$-triazanaphthalene (0.030 g .) (Found: C, $51 \cdot 4 ; \mathrm{H}, 3 \cdot 25 ; \mathrm{N}, 25 \cdot 3 \%$. $\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{~N}_{3} \mathrm{O}$ requires C, $51 \cdot 5 ; \mathrm{H}, 3 \cdot 1 ; \mathrm{N}, 25.8 \%$).
${ }^{32}$ Rigby, J., 1950, 1912.

Oxidation of 3 -Hydroxy-1,4,6-triazanaphthalene.-This substance ($0 \cdot 1 \mathrm{~g}$.) in $2 \cdot 5 \mathrm{~N}$-potassium hydroxide was added to potassium ferricyanide (1.6 g .), dissolved in a little water at 20°. Next day the pH was adjusted to 7 , and the precipitated 2,3 -dihydroxy-1,4,6-triazanaphthalene (0.09 g .) was recrystallized from water (Found: C, 51.7 ; H, 3.3 ; N, 25.65%.

3-Methyl-1,4,6-triazanaphthalene.-Commercial 30% aqueous pyruvaldehyde (9 ml .) was refluxed with a suspension of 3,4 -diaminopyridine (2.7 g .) in benzene (50 ml .) for 3 hr . (under nitrogen), while water was removed by azeotropic distillation. The residual benzene was removed under reduced pressure, and the residue extracted by refluxing light petroleum (b. p. $60-80^{\circ}$) (5 ml .) for 15 min . Sublimation of the extracted material at $50^{\circ} / 0.001 \mathrm{~mm}$. gave colourless crystals (0.5 g .) of a product, m. p. $78-79^{\circ}$ (Found: C, 66.45 ; H, 5.0 ; N, 28.9. $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~N}_{3}$ requires C, $66.2 ; \mathrm{H}, 4.9$; $\mathrm{N}, 28.95 \%$).

2-Hydroxy-3-methyl- and 3-Hydroxy-2-methyl-1,4,6-triazanaphthalene.-Ethyl pyruvate ${ }^{33}$ (4 g .) (freshly prepared from pyruvic acid ${ }^{34}$ and fractionated; b. p. $144-148^{\circ} / 710 \mathrm{~mm}$.), 3,4 -diaminopyridine (2.8 g .), and ethanol were refluxed for 1 hr . and chilled overnight. The white solid (A) (2.5 g .) was filtered off. The filtrate, taken to dryness, gave a solid (B) (3.0 g .) Solid A was extracted (Soxhlet) with benzene. The extract, taken to dryness, gave a residue which recrystallized from ethanol to give 3 -hydroxy-2-methyl-1,4,6-triazanaphthalene (1.3 g.), $\mathrm{m} . \mathrm{p} .280^{\circ}$ (decomp.) (Found: C, $59.9 ; \mathrm{H}, \mathbf{4} \cdot \mathbf{4} ; \mathrm{N}, 26 \cdot 2 . \mathrm{C}_{8} \mathrm{H}_{7} \mathrm{~N}_{3} \mathrm{O}$ requires C, $59.6 ; \mathrm{H}, 4 \cdot 4$; $\mathrm{N}, 26 \cdot 1 \%$), $v_{\text {max. }} 2680$ (NH stretching) and $1679 \mathrm{~cm} .^{-1}$ (C=O stretching). Solid B was chromatographed in ethanol over alumina. The earlier fractions of the eluate were evaporated to dryness, and the residue recrystallized from water gave 2 -hydroxy-3-methyl-1,4,6-triazanaphthalene (0.37 g .), m. p. 265° (Found: C, $59.85 ; \mathrm{H}, 4 \cdot 4 ; \mathrm{N}, 26.3 \%$), $\nu_{\text {max. }} 2860$ (NH stretching) and $1688 \mathrm{~cm} .^{-1}$ (C=O stretching). Paper chromatography in butanol-acetic acid, as above, gave $R_{\mathrm{F}} 0.70$ and 0.60 for the 2 - and the 3 -hydroxy-isomer, respectively (see Introduction for photolytic differentiation).

Methyl α-(3-Nitro-4-pyridyl)aminopropionate ($\mathrm{V} ; \mathrm{R}=\mathrm{R}^{\prime}=\mathrm{Me}$).-10n-Sodium hydroxide (30 ml .) was added during 5 min . to a stirred suspension of methyl α-aminopropionate hydrochloride (32 g .), water (16 ml .), and benzene (75 ml .). After 15 minutes' further stirring, sufficient potassium carbonate was added to form a paste. The benzene was decanted and the residue extracted with benzene ($3 \times 50 \mathrm{ml}$.). The combined extracts were dried ($\mathrm{K}_{2} \mathrm{CO}_{3}$), cooled, and stirred, and 4 -chloro- 3 -nitropyridine (9 g .), in a little benzene, was added. The mixture was set aside overnight at 20° and for some hours at 5°. Unused methyl aminopropionate hydrochloride was filtered off; the filtrate, after concentration, deposited yellow needles of methyl α-(3-nitro-4-pyridyl)aminopropionate (5 g.), m. p. 96-97 ${ }^{\circ}$ (from alcohol) (Found: C, $47.9 ; \mathrm{H}, 4.8 ; \mathrm{N}, 18 \cdot 2 . \quad \mathrm{C}_{9} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{4}$ requires $\left.\mathrm{C}, 48 \cdot 0 ; \mathrm{H}, 4.9 ; \mathrm{N}, 18.7 \%\right)$.

1,2-Dihydro-3-hydroxy-2-methyl-1,4,6-triazanaphthalene.-(a) The above nitro-ester (0.72 g .) in ethanol (70 ml .) was shaken with hydrogen over Raney nickel at $20^{\circ} / 710 \mathrm{~mm}$. The catalyst was filtered off and washed with boiling ethanol. The combined filtrates, when evaporated, gave a residue that was extracted with boiling water ($0 \cdot 1 \mathrm{~g}$. of insoluble material discarded). The extract, after concentration, gave 1,2-dihydro-3-hydroxy-2-methyl-1,4,6-triazanaphthalene (0.1 g.), m. p. $261-263^{\circ}$ (Found: C, 58.7 ; H, 5.5 ; N, $25.5 . \mathrm{C}_{8} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}$ requires C, 58.9 ; H, $5 \cdot 6 ; \mathrm{N}, 25 \cdot 75 \%$), $\nu_{\text {max }} 2980$ (NH stretching) and $1680 \mathrm{~cm} .^{-1}$ (C=O stretching).
(b) Potassium borohydride (0.02 g .) was added to 3 -hydroxy-2-methyl-1,4,6-triazanaphthalene (0.15 g .; m. p. 280°) in 0.5 N -potassium hydroxide (2 ml .), and the mixture was set aside at 20° overnight. On each of the next two days, potassium borohydride (0.04 g .) was added. After two more days at 20°, the suspension was adjusted to pH 9.0 with 10 N -hydrochloric acid. The colourless precipitate (0.135 g .) was filtered off and recrystallized from water, to give 1,2-dihydro-3-hydroxy-2-methyl-1,4,6-triazanaphthalene, m. p. 265°, identical in R_{F} and infrared spectrum with the above material (Found: C, 58.7 ; H, $5 \cdot 4 ; \mathrm{N}, 26.0 \%$). This substance resisted oxidation by either iodine or potassium ferricyanide.

1,2-Dihydro-1,3-dimethyl-2-oxo-1,4,6-triazanaphthalene.-3-Amino-4-methylaminopyridine ${ }^{30}$ (0.5 g .), ethyl pyruvate (0.7 g .), and ethanol (25 ml .) were refluxed for 1.5 hr . The solvent was evaporated; the residue, crystallized from cyclohexane, gave 1,2-dihydro-1,3-dimethyl-2-oxo-1,4,6-triazanaphthalene (0.35 g .), m. p. $141-142^{\circ}$ (Found, for sample sublimed at $130^{\circ} / 0.1 \mathrm{~mm}$.; $\mathrm{C}, 61 \cdot 5 ; \mathrm{H}, 5 \cdot 2 ; \mathrm{N}, 24 \cdot 0 . \quad \mathrm{C}_{9} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}$ requires $\left.\mathrm{C}, 61 \cdot 7 ; \mathrm{H}, 5 \cdot 2 ; \mathrm{N}, 24.0 \%\right)$, $v_{\text {max. }} 1665 \mathrm{~cm} .^{-1}$ ($\mathrm{C}=\mathrm{O}$ stretching). After chromatography on paper, this compound (but not its isomer) gives

[^4]the photo-change described above for 2 -hydroxy- and 2-hydroxy-3-methyl-1,4,6-triazanaphthalene.

3,4-Dihydro-2,4-dimethyl-3-oxo-1,4,6-triazanaphthalene.-4-Amino-3-methylaminopyridine ${ }^{\mathbf{3 0}}$ $(0.2 \mathrm{~g}$.) , ethyl pyruvate (0.25 g .), and benzene (12 ml .) were refluxed, under nitrogen, for 4 hr . Water was removed by azeotropic distillation and refluxing continued for 4 hr ., followed by evaporation to dryness. The residue, when chromatographed in chloroform over alumina and recrystallized from light petroleum (b. p. 60- 80°), gave 3,4-dihydro-2,4-dimethyl-3-oxo-1,4,6triazanaphthalene (0.14 g.), m. p. $114-115^{\circ}$ (Found: C, 61.7 ; H, $5 \cdot 2 ; \mathrm{N}, 24.0 \%$), $v_{\text {max }} 1670$ $\mathrm{cm} .^{-1}$ ($\mathrm{C}=\mathrm{O}$ stretching).

4,6-Dichloropyridine-3-carboxylic Acid and its Amide.-Ethyl 4,6-dihydroxypyridine-3carboxylate (12 g .) and phosphorus oxychloride (120 ml .) were refluxed at 120° for 1.5 hr . (this is preferable to heating in sealed tubes ${ }^{17}$). The excess of reagent was removed under reduced pressure. The residue, poured on ice (100 g .), gave the low-melting ethyl 4,6-dichloropyridine3 -carboxylate (13 g .). Alkaline hydrolysis gave 4,6 -dichloropyridine- 3 -carboxylic acid monohydrate, m. p. $154-156^{\circ}$ (lit., ${ }^{17} 155^{\circ}$). This acid (7 g .), phosphorus oxychloride (10 ml .), and phosphorus pentachloride (21 g .) were refluxed at 140° for 30 min . The excess of oxychloride was removed under reduced pressure and the residue shaken with benzene. Ammonia was passed into the filtered solution. The ensuing white precipitate gave 4,6-dichloropyridine-3carbuxamide (5 g.) m. p. 151- 152° (from water), identical with a specimen of the " anhydrous 2,4-dichloropyridine-5-carboxylic acid" prepared as described ${ }^{17}$ by den Hertog et al. (m. p. $152-153^{\circ}$) (Found: C, $38.0 ; \mathrm{H}, 2.4 ; \mathrm{N}, 14.6 . \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}$ requires C, 37.7 ; H, 2.1; N, $14 \cdot 7 \%$). The same amide (m. p. 153- 154°) was produced by similarly treating 4,6-dihydroxy-pyridine-3-carboxylic acid ${ }^{35}$ with phosphorus halides followed by ammonia.
$\overline{0}$-A mino-2,4-dichloropyridine.-Bromine (5 ml .) was slowly stirred into cooled 7% aqueous potassium hydroxide (500 ml .). 4,6-Dichloropyridine- 3 -carboxamide (5 g .) was added. The mixture was set aside at 20° for 1.5 hr ., then at 70° for 4 hr ., cooled, and acidified with acetic acid. After an hour, the solution was made alkaline with potassium hydroxide and extracted with chloroform. The residue obtained by evaporating the chloroform and crystallized from light petroleum (b. p. $60-80^{\circ}$) gave 5 -amino-2,4-dichloropyridine (1.8 g.), m. p. $84-85^{\circ}$ (Found, for a sublimed sample: $\mathrm{C}, \mathbf{3 6} \cdot 65 ; \mathrm{H}, \mathbf{2 \cdot 7} ; \mathrm{Cl}, 43 \cdot 15 ; \mathrm{N}, 17 \cdot 2$. Calc. for $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{Cl}_{2} \mathrm{~N}_{2}$: C, $36 \cdot 8$; H, $2.5 ; \mathrm{Cl}, 43.5 ; \mathrm{N}, 17.2 \%$). Earlier workers ${ }^{17}$ gave m. p. $80-81^{\circ}$ for 5 -amino-2,4-dichloropyridine prepared from 2,4 -dichloro-5-cyanopyridine and potassium hypobromite, a method which we found unsatisfactory.

2-Chloro-4,5-diaminopyridine.-5-Amino-2,4-dichloropyridine (0.5 g .) and 98% hydrazine hydrate (10 ml .) were refluxed for 5 hr . The volatile components were removed under reduced pressure. The residue, evaporated twice with ethanol and recrystallized from water, gave 5 -amino-2-chloro-4-hydrazinopyridine (0.43 g .), m. p. $167-169^{\circ}$ (Found: C, $37.8 ; \mathrm{H}, 4 \cdot 4 ; \mathrm{Cl}$, $22 \cdot 3 ; \mathrm{N}, 35 \cdot 1 . \quad \mathrm{C}_{5} \mathrm{H}_{7} \mathrm{ClN}_{4}$ requires $\mathrm{C}, 37 \cdot 9 ; \mathrm{H}, 4 \cdot 45 ; \mathrm{Cl}, 22 \cdot 4 ; \mathrm{N}, 35 \cdot 3 \%$). This hydrazine $(4.6 \mathrm{~g}$.) was refluxed with zinc dust ($2 \cdot 7 \mathrm{~g}$.) in N -sulphuric acid (540 ml .) for 3 hr . The cooled solution was made strongly alkaline with 10 N -sodium hydroxide and repeatedly extracted with chlorioform. The extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. The residue, recrystallized from benzene, gave 2 -chloro- 4,5 -diaminopyridine (3.3 g .) m. p. 146° (lit., ${ }^{18} \mathrm{~m}$. p. 145°).

7-Chloro-1,4,6-triazanaphthalene.-4,5-Diamino-2-chloropyridine ($2 \cdot 1 \mathrm{~g}$.), polymeric glyoxal monohydrate (1.47 g .; British Drug Houses), and ethanol (105 ml .) were refluxed for 2 hr . The mixture was evaporated to dryness. The residue, crystallized from light petroleum (b. p. $60-80^{\circ}$), gave 7 -chloro-1,4,6-triazanaphthalene (1.93 g.), m. p. $114-115^{\circ}$ (Found: C, $51 \cdot 1$; $\mathrm{H}, \mathbf{2 \cdot 6} ; \mathrm{Cl}, 21 \cdot 7 ; \mathrm{N}, 25 \cdot 3 . \quad \mathrm{C}_{7} \mathrm{H}_{4} \mathrm{ClN}_{3}$ requires $\mathrm{C}, 50 \cdot 8 ; \mathrm{H}, 2 \cdot 4 ; \mathrm{Cl}, 21 \cdot 4 ; \mathrm{N}, 25 \cdot 4 \%$). Refluxing this with hydrazine hydrate gave 2 -chloro- 4,5 -diaminopyridine.

7-A mino-1,4,6-triazanaphthalene.-7-Chloro-1,4,6-triazanaphthalene (1.5 g .), freshly precipitated copper (0.7 g .), and liquid ammonia (80 ml .) were heated in a stirred autoclave at 110 120° for 24 hr . When the vessel had cooled, the ammonia was allowed to evaporate and the residue extracted with boiling ethanol. The alcohol was evaporated, and the residue chromatographed in chloroform over alumina. The main yellow band (the second band) was collected, and the solvent evaporated. The residue, crystallized from benzene and sublimed at $180^{\circ} / 0 \cdot 01$ mm ., gave 7-amino-1,4,6-triazanaphthalene (175 mg .), m. p. 210-212 ${ }^{\circ}$ (Found: C, 58.1 ; H, $4 \cdot 15 ; \mathrm{N}, 37 \cdot 9 . \quad \mathrm{C}_{7} \mathrm{H}_{6} \mathrm{~N}_{4}$ requires C, $\left.57 \cdot 5 ; \mathrm{H}, 4 \cdot 1 ; \mathrm{N}, 38 \cdot 3 \%\right)$.

Oxidation of $1,4,6$-Triazanaphthalene.-A mixture of 0.3 m -potassium permanganate (5 ml .)
${ }^{35}$ Errera, Ber., 1898, 31, 1682.
and $1,4,6$-triazanaphthalene ($0 \cdot 18 \mathrm{~g}$.) in $0 \cdot 1 \mathrm{~N}$-sodium hydroxide (18 ml .) was set aside overnight at 20°, filtered over kieselguhr, and evaporated to dryness. The residue, recrystallized from water, gave 3-hydroxy-1,4,6-triazanaphthalene (65 mg .), identical in infrared spectrum with that described above.

We thank Dr. D. D. Perrin for valuable discussions and guidance in the rapid-reaction work, Dr. E. Spinner for the infrared spectra, and Mr. K. Tratt for experimental assistance, also Dr. J. W. Clark-Lewis for a specimen of 2,3-dimethýl-1,4,6-triazanaphthalene.

[^5]
[^0]: ${ }^{1}$ Part I, Armarego, J., 1962, 4094.

 * Albert, Proc. Third Internat. Pteridine Symposium, Stuttgart, 1962, Pergamon, Oxford, 1963.
 ${ }^{3}$ Albert, Armarego, and Spinner, $J ., 1961,2689,5267$.
 ${ }^{4}$ Albert, Howell, and Spinner, J., 1962, 2595.
 ${ }^{5}$ Albert and Howell, J., 1962, 1591.
 ${ }^{6}$ Albert and Reich, J., 1961, 127.

[^1]: 14 Albert, Brown, and Wood, J., 1954, 3832.
 ${ }^{15}$ Clark-Lewis and Singh, J., 1962, 3162.
 ${ }^{16}$ Clark-Lewis and Thompson, $J ., 1957,430$.
 ${ }^{17}$ den Hertog, Schogt, de Bruyn, and de Klerk, Rec. Tvav. chim., 1950, 69, 673.

[^2]: 18 Talik and Plazek, Roczniki Chem., 1956, 30, 1139.
 ${ }^{19}$ Koenigs, Bueren, and Jung, Ber., 1936, 69, 2690.
 ${ }_{20}$ Perrin and Inoue, Proc. Chem. Soc., 1960, 342.
 ${ }_{21}$ Perrin, $J ., 1960,3189$.
 ${ }_{22}$ Perrin, J., 1962, 645.

[^3]: ${ }^{24}$ Armarego, $J ., 1962,561$.
 ${ }_{25}$ De Selms and Mosher, J. Amer. Chem. Soc., 1960, 82, 3767.
 ${ }^{28}$ Inoue and Perrin, J., 1963, 4803.

[^4]: ${ }^{33}$ Archer and Pratt, J. Amer. Chem. Soc., 1944, 66, 1656.
 ${ }^{34}$ Howard and Fraser, Org. Synth., Coll. Vol. I, 1948, p. 475.

[^5]: Department of Medical Chemistry, Institute of Advanced Studies, Australian National University, Canberra.
 [Received, April 2nd, 1963.]

